Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
1.
Clin Cancer Res ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652814

RESUMO

PURPOSE: Immune-related cutaneous adverse events (ircAEs) occur in ≥50% of patients treated with checkpoint inhibitors (CPI), but mechanisms are poorly understood. EXPERIMENTAL DESIGN: Phenotyping/biomarker analyses were conducted in 200 patients on CPIs (139 with ircAEs, 61 without, control) to characterize their clinical presentation and immunologic endotypes. Cytokines were evaluated in skin biopsies, skin tape strip (STS) extracts and plasma using real-time PCR and Meso Scale Discovery multiplex cytokine assays. RESULTS: Eight ircAE phenotypes were identified: pruritus (26%), maculopapular rash (MPR; 21%), eczema (19%), lichenoid (11%), urticaria (8%), psoriasiform (6%), vitiligo (5%), and bullous dermatitis (4%). All phenotypes showed skin lymphocyte and eosinophil infiltrates. Skin biopsy PCR revealed the highest increase in IFN-gamma mRNA in patients with lichenoid (p<0.0001) and psoriasiform dermatitis (p<0.01) as compared to patients without ircAEs, while the highest IL-13 mRNA levels were detected in the eczema (p<0.0001, compared to control). IL-17A mRNA was selectively increased in psoriasiform (p<0.001), lichenoid (p<0.0001), bullous dermatitis (p<0.05) and MPR (p<0.001), compared to control. Distinct cytokine profiles were confirmed in STS and plasma. Analysis determined increased skin/plasma IL-4 cytokine in pruritus, skin IL-13 in eczema, plasma IL-5 and IL-31 in eczema and urticaria, and mixed-cytokine pathways in MPR. Broad inhibition via corticosteroids or type 2-cytokine targeted inhibition resulted in clinical benefit in these ircAEs. In contrast, significant skin upregulation of type 1/type 17 pathways was found in psoriasiform, lichenoid, bullous dermatitis, and type 1 activation in vitiligo. CONCLUSIONS: Distinct immunologic ircAE endotypes suggest actionable targets for precision medicine-based interventions.

2.
Cancer Cell ; 42(5): 738-741, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38579723

RESUMO

Combined immune checkpoint blockade (ICB) for cancer exhibits good efficacy in a subset of patients but also associates with immune-related adverse events. Xue et al. use an elegant drug screening strategy to identify the antimicrobial drug clofazimine as an agent that both potentiates ICB efficacy and decreases immune-related adverse events.


Assuntos
Clofazimina , Imunoterapia , Neoplasias , Clofazimina/uso terapêutico , Clofazimina/efeitos adversos , Humanos , Imunoterapia/métodos , Imunoterapia/efeitos adversos , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Inibidores de Checkpoint Imunológico/efeitos adversos , Animais
3.
Nat Cancer ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503896

RESUMO

Chimeric antigen receptor T cells have dramatically improved the treatment of hematologic malignancies. T cell antigen receptor (TCR)-based cell therapies are yet to achieve comparable outcomes. Importantly, chimeric antigen receptors not only target selected antigens but also reprogram T cell functions through the co-stimulatory pathways that they engage upon antigen recognition. We show here that a fusion receptor comprising the CD80 ectodomain and the 4-1BB cytoplasmic domain, termed 80BB, acts as both a ligand and a receptor to engage the CD28 and 4-1BB pathways, thereby increasing the antitumor potency of human leukocyte antigen-independent TCR (HIT) receptor- or TCR-engineered T cells and tumor-infiltrating lymphocytes. Furthermore, 80BB serves as a switch receptor that provides agonistic 4-1BB co-stimulation upon its ligation by the inhibitory CTLA4 molecule. By combining multiple co-stimulatory features in a single antigen-agnostic synthetic receptor, 80BB is a promising tool to sustain CD3-dependent T cell responses in a wide range of targeted immunotherapies.

4.
iScience ; 27(2): 108880, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38333710

RESUMO

Local cryoablation can engender systemic immune activation/anticancer responses in tumors otherwise resistant to immune checkpoint blockade (ICB). We evaluated the safety/tolerability of preoperative cryoablation plus ipilimumab and nivolumab in 5 early-stage/resectable breast cancers. The primary endpoint was met when all 5 patients underwent standard-of-care primary breast surgery undelayedly. Three patients developed transient hyperthyroidism; one developed grade 4 liver toxicity (resolved with supportive management). We compared this strategy with cryoablation and/or ipilimumab. Dual ICB plus cryoablation induced higher expression of T cell activation markers and serum Th1 cytokines and reduced immunosuppressive serum CD4+PD-1hi T cells, improving effector-to-suppressor T cell ratio. After dual ICB and before cryoablation, T cell receptor sequencing of 4 patients showed increased T cell clonality. In this small subset of patients, we provide preliminary evidence that preoperative cryoablation plus ipilimumab and nivolumab is feasible, inducing systemic adaptive immune activation potentially more robust than cryoablation with/without ipilimumab.

5.
Cancer Cell ; 42(2): 209-224.e9, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38215748

RESUMO

Although immunotherapy with PD-(L)1 blockade is routine for lung cancer, little is known about acquired resistance. Among 1,201 patients with non-small cell lung cancer (NSCLC) treated with PD-(L)1 blockade, acquired resistance is common, occurring in >60% of initial responders. Acquired resistance shows differential expression of inflammation and interferon (IFN) signaling. Relapsed tumors can be separated by upregulated or stable expression of IFNγ response genes. Upregulation of IFNγ response genes is associated with putative routes of resistance characterized by signatures of persistent IFN signaling, immune dysfunction, and mutations in antigen presentation genes which can be recapitulated in multiple murine models of acquired resistance to PD-(L)1 blockade after in vitro IFNγ treatment. Acquired resistance to PD-(L)1 blockade in NSCLC is associated with an ongoing, but altered IFN response. The persistently inflamed, rather than excluded or deserted, tumor microenvironment of acquired resistance may inform therapeutic strategies to effectively reprogram and reverse acquired resistance.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Transdução de Sinais , Imunoterapia , Apresentação de Antígeno , Antígeno B7-H1/metabolismo , Microambiente Tumoral
6.
Lab Chip ; 24(3): 396-407, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38180130

RESUMO

The effects of immunotherapeutics on interactions between immune and cancer cells are modulated by multiple components in the tumour microenvironment (TME), including endothelium and tumour stroma, which provide both a physical barrier and immunosuppressive stimuli. Herein, we report a recirculating chip to enable continuous immune cell recirculation through a microfluidic cell array to include these crucial players. This system consists of a three-layered cell array (µFCA) spatially emulating the TME, with tailored fluidic circuits establishing T cell recirculation. This platform enables the study of dynamics among the TME, immune cells in a circulatory system and cancer cell responses thereof. Through this system, we found that tumour endothelium hindered T cell infiltration into the reconstructed breast cancer tumour compartment. This negative effect was alleviated when treated with anti-human PD-L1 (programmed cell death ligand 1) antibody. Another key stromal component - cancer associated fibroblasts - attenuated T cell infiltration, compared against normal fibroblasts, and led to reduced apoptotic activity in cancer cells. These results confirm the capability of our tumour-on-a-chip system in identifying some key axes to target in overcoming barriers to immunotherapy by recapitulating immune cell interactions with the reconstructed TME. Our results also attest to the feasibility of scaling up this system for high-throughput cancer immunotherapeutic screening.


Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Microfluídica , Imunoterapia , Linfócitos T
7.
Life Sci Alliance ; 7(1)2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37891002

RESUMO

We previously reported that activation of p53 by APR-246 reprograms tumor-associated macrophages to overcome immune checkpoint blockade resistance. Here, we demonstrate that APR-246 and its active moiety, methylene quinuclidinone (MQ) can enhance the immunogenicity of tumor cells directly. MQ treatment of murine B16F10 melanoma cells promoted activation of melanoma-specific CD8+ T cells and increased the efficacy of a tumor cell vaccine using MQ-treated cells even when the B16F10 cells lacked p53. We then designed a novel combination of APR-246 with the TLR-4 agonist, monophosphoryl lipid A, and a CD40 agonist to further enhance these immunogenic effects and demonstrated a significant antitumor response. We propose that the immunogenic effect of MQ can be linked to its thiol-reactive alkylating ability as we observed similar immunogenic effects with the broad-spectrum cysteine-reactive compound, iodoacetamide. Our results thus indicate that combination of APR-246 with immunomodulatory agents may elicit effective antitumor immune response irrespective of the tumor's p53 mutation status.


Assuntos
Linfócitos T CD8-Positivos , Melanoma , Camundongos , Animais , Proteína Supressora de Tumor p53/genética , Antígenos de Neoplasias
8.
Cancer Res Commun ; 3(12): 2447-2454, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37930123

RESUMO

PURPOSE: Preclinical studies show that activation of AMP kinase by phenformin can augment the cytotoxic effect and RAF inhibitors in BRAF V600-mutated melanoma. We conducted a phase Ib dose-escalation trial of phenformin with standard dose dabrafenib/trametinib in patients with metastatic BRAF V600-mutated melanoma. EXPERIMENTAL DESIGN: We used a 3+3 dose-escalation design which explored phenformin doses between 50 and 200 mg twice daily. Patients also received standard dose dabrafenib/trametinib. We measured phenformin pharmacokinetics and assessed the effect of treatment on circulating myeloid-derived suppressor cells (MDSC). RESULTS: A total of 18 patients were treated at dose levels ranging from 50 to 200 mg twice daily. The planned dose-escalation phase had to be cancelled because of the COVID 19 pandemic. The most common toxicities were nausea/vomiting; there were two cases of reversible lactic acidosis. Responses were seen in 10 of 18 patients overall (56%) and in 2 of 8 patients who had received prior therapy with RAF inhibitor. Pharmacokinetic data confirmed drug bioavailability. MDSCs were measured in 7 patients treated at the highest dose levels and showed MDSC levels declined on study drug in 6 of 7 patients. CONCLUSIONS: We identified the recommended phase II dose of phenformin as 50 mg twice daily when administered with dabrafenib/trametinib, although some patients will require short drug holidays. We observed a decrease in MDSCs, as predicted by preclinical studies, and may enhance immune recognition of melanoma cells. SIGNIFICANCE: This is the first trial using phenformin in combination with RAF/MEK inhibition in patients with BRAF V600-mutated melanoma. This is a novel strategy, based on preclinical data, to increase pAMPK while blocking the MAPK pathway in melanoma. Our data provide justification and a recommended dose for a phase II trial.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Fenformin/efeitos adversos , Proteínas Proto-Oncogênicas B-raf/genética
9.
Clin Cancer Res ; 29(18): 3633-3640, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37406106

RESUMO

PURPOSE: We report updated clinical outcomes from a phase II study of pembrolizumab, trastuzumab, and chemotherapy (PTC) in metastatic esophagogastric cancer in conjunction with outcomes from an independent Memorial Sloan Kettering (MSK) cohort. PATIENTS AND METHODS: The significance of pretreatment 89Zr-trastuzumab PET, plasma circulating tumor DNA (ctDNA) dynamics, and tumor HER2 expression and whole exome sequencing was evaluated to identify prognostic biomarkers and mechanisms of resistance in patients treated on-protocol with PTC. Additional prognostic features were evaluated using a multivariable Cox regression model of trastuzumab-treated MSK patients (n = 226). Single-cell RNA sequencing (scRNA-seq) data from MSK and Samsung were evaluated for mechanisms of therapy resistance. RESULTS: 89Zr-trastuzumab PET, scRNA-seq, and serial ctDNA with CT imaging identified how pre-treatment intrapatient genomic heterogeneity contributes to inferior progression-free survival (PFS). We demonstrated that the presence of intensely avid lesions by 89Zr-trastuzumab PET declines in tumor-matched ctDNA by 3 weeks, and clearance of tumor-matched ctDNA by 9 weeks were minimally invasive biomarkers of durable PFS. Paired pre- and on-treatment scRNA-seq identified rapid clearance of HER2-expressing tumor clones with expansion of clones expressing a transcriptional resistance program, which was associated with MT1H, MT1E, MT2A, and MSMB expression. Among trastuzumab-treated patients at MSK, ERBB2 amplification was associated with improved PFS, while alterations in MYC and CDKN2A/B were associated with inferior PFS. CONCLUSIONS: These findings highlight the clinical relevance of identifying baseline intrapatient heterogeneity and serial ctDNA monitoring of HER2-positive esophagogastric cancer patients to identify early evidence of treatment resistance, which could guide proactive therapy escalation or deescalation.


Assuntos
Neoplasias da Mama , Neoplasias Esofágicas , Neoplasias Gástricas , Humanos , Feminino , Receptor ErbB-2/metabolismo , Receptor de Morte Celular Programada 1/uso terapêutico , Radioisótopos/uso terapêutico , Zircônio , Biomarcadores Tumorais/metabolismo , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/induzido quimicamente , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Trastuzumab/efeitos adversos , Neoplasias da Mama/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos
10.
Cancer Cell ; 41(7): 1363-1380.e7, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37327788

RESUMO

Inactivating STK11/LKB1 mutations are genomic drivers of primary resistance to immunotherapy in KRAS-mutated lung adenocarcinoma (LUAD), although the underlying mechanisms remain unelucidated. We find that LKB1 loss results in enhanced lactate production and secretion via the MCT4 transporter. Single-cell RNA profiling of murine models indicates that LKB1-deficient tumors have increased M2 macrophage polarization and hypofunctional T cells, effects that could be recapitulated by the addition of exogenous lactate and abrogated by MCT4 knockdown or therapeutic blockade of the lactate receptor GPR81 expressed on immune cells. Furthermore, MCT4 knockout reverses the resistance to PD-1 blockade induced by LKB1 loss in syngeneic murine models. Finally, tumors from STK11/LKB1 mutant LUAD patients demonstrate a similar phenotype of enhanced M2-macrophages polarization and hypofunctional T cells. These data provide evidence that lactate suppresses antitumor immunity and therapeutic targeting of this pathway is a promising strategy to reversing immunotherapy resistance in STK11/LKB1 mutant LUAD.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Animais , Camundongos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/terapia , Adenocarcinoma de Pulmão/metabolismo , Lactatos/metabolismo , Lactatos/farmacologia , Lactatos/uso terapêutico , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/tratamento farmacológico , Macrófagos , Mutação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
11.
Nanoscale Horiz ; 8(8): 1122, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37382592

RESUMO

Correction for 'Multiplexed molecular imaging with surface enhanced resonance Raman scattering nanoprobes reveals immunotherapy response in mice via multichannel image segmentation' by Chrysafis Andreou et al., Nanoscale Horiz., 2022, 7, 1540-1552, https://doi.org/10.1039/d2nh00331g.

12.
J Exp Med ; 220(8)2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37145142

RESUMO

Effective depletion of immune suppressive regulatory T cells (Tregs) in the tumor microenvironment without triggering systemic autoimmunity is an important strategy for cancer immunotherapy. Modified vaccinia virus Ankara (MVA) is a highly attenuated, non-replicative vaccinia virus with a long history of human use. Here, we report rational engineering of an immune-activating recombinant MVA (rMVA, MVA∆E5R-Flt3L-OX40L) with deletion of the vaccinia E5R gene (encoding an inhibitor of the DNA sensor cyclic GMP-AMP synthase, cGAS) and expression of two membrane-anchored transgenes, Flt3L and OX40L. Intratumoral (IT) delivery of rMVA (MVA∆E5R-Flt3L-OX40L) generates potent antitumor immunity, dependent on CD8+ T cells, the cGAS/STING-mediated cytosolic DNA-sensing pathway, and type I IFN signaling. Remarkably, IT rMVA (MVA∆E5R-Flt3L-OX40L) depletes OX40hi regulatory T cells via OX40L/OX40 interaction and IFNAR signaling. Single-cell RNA-seq analyses of tumors treated with rMVA showed the depletion of OX40hiCCR8hi Tregs and expansion of IFN-responsive Tregs. Taken together, our study provides a proof-of-concept for depleting and reprogramming intratumoral Tregs via an immune-activating rMVA.


Assuntos
Neoplasias , Vaccinia virus , Humanos , Vaccinia virus/genética , Linfócitos T CD8-Positivos , Nucleotidiltransferases/genética , Microambiente Tumoral
13.
Nature ; 618(7963): 144-150, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37165196

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is lethal in 88% of patients1, yet harbours mutation-derived T cell neoantigens that are suitable for vaccines 2,3. Here in a phase I trial of adjuvant autogene cevumeran, an individualized neoantigen vaccine based on uridine mRNA-lipoplex nanoparticles, we synthesized mRNA neoantigen vaccines in real time from surgically resected PDAC tumours. After surgery, we sequentially administered atezolizumab (an anti-PD-L1 immunotherapy), autogene cevumeran (a maximum of 20 neoantigens per patient) and a modified version of a four-drug chemotherapy regimen (mFOLFIRINOX, comprising folinic acid, fluorouracil, irinotecan and oxaliplatin). The end points included vaccine-induced neoantigen-specific T cells by high-threshold assays, 18-month recurrence-free survival and oncologic feasibility. We treated 16 patients with atezolizumab and autogene cevumeran, then 15 patients with mFOLFIRINOX. Autogene cevumeran was administered within 3 days of benchmarked times, was tolerable and induced de novo high-magnitude neoantigen-specific T cells in 8 out of 16 patients, with half targeting more than one vaccine neoantigen. Using a new mathematical strategy to track T cell clones (CloneTrack) and functional assays, we found that vaccine-expanded T cells comprised up to 10% of all blood T cells, re-expanded with a vaccine booster and included long-lived polyfunctional neoantigen-specific effector CD8+ T cells. At 18-month median follow-up, patients with vaccine-expanded T cells (responders) had a longer median recurrence-free survival (not reached) compared with patients without vaccine-expanded T cells (non-responders; 13.4 months, P = 0.003). Differences in the immune fitness of the patients did not confound this correlation, as responders and non-responders mounted equivalent immunity to a concurrent unrelated mRNA vaccine against SARS-CoV-2. Thus, adjuvant atezolizumab, autogene cevumeran and mFOLFIRINOX induces substantial T cell activity that may correlate with delayed PDAC recurrence.


Assuntos
Antígenos de Neoplasias , Vacinas Anticâncer , Carcinoma Ductal Pancreático , Ativação Linfocitária , Neoplasias Pancreáticas , Linfócitos T , Humanos , Adjuvantes Imunológicos/uso terapêutico , Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/imunologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/terapia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Imunoterapia , Ativação Linfocitária/imunologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/terapia , Linfócitos T/citologia , Linfócitos T/imunologia , Vacinas de mRNA
14.
Cell ; 186(7): 1432-1447.e17, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-37001503

RESUMO

Cancer immunotherapies, including adoptive T cell transfer, can be ineffective because tumors evolve to display antigen-loss-variant clones. Therapies that activate multiple branches of the immune system may eliminate escape variants. Here, we show that melanoma-specific CD4+ T cell therapy in combination with OX40 co-stimulation or CTLA-4 blockade can eradicate melanomas containing antigen escape variants. As expected, early on-target recognition of melanoma antigens by tumor-specific CD4+ T cells was required. Surprisingly, complete tumor eradication was dependent on neutrophils and partly dependent on inducible nitric oxide synthase. In support of these findings, extensive neutrophil activation was observed in mouse tumors and in biopsies of melanoma patients treated with immune checkpoint blockade. Transcriptomic and flow cytometry analyses revealed a distinct anti-tumorigenic neutrophil subset present in treated mice. Our findings uncover an interplay between T cells mediating the initial anti-tumor immune response and neutrophils mediating the destruction of tumor antigen loss variants.


Assuntos
Melanoma , Linfócitos T , Camundongos , Animais , Linfócitos T/patologia , Neutrófilos/patologia , Deriva e Deslocamento Antigênicos , Imunoterapia , Antígeno CTLA-4
15.
Cancer Cell ; 41(4): 776-790.e7, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-37001526

RESUMO

Paired single-cell RNA and T cell receptor sequencing (scRNA/TCR-seq) has allowed for enhanced resolution of clonal T cell dynamics in cancer. Here, we report a scRNA/TCR-seq analysis of 187,650 T cells from 31 tissue regions, including tumor, adjacent normal tissues, and lymph nodes (LN), from three patients with non-small cell lung cancer after immune checkpoint blockade (ICB). Regions with viable cancer cells are enriched for exhausted CD8+ T cells, regulatory CD4+ T cells (Treg), and follicular helper CD4+ T cells (TFH). Tracking T cell clonotypes across tissues, combined with neoantigen specificity assays, reveals that TFH and tumor-specific exhausted CD8+ T cells are clonally linked to TCF7+SELL+ progenitors in tumor draining LNs, and progressive exhaustion trajectories of CD8+ T, Treg, and TFH cells with proximity to the tumor microenvironment. Finally, longitudinal tracking of tumor-specific CD8+ and CD4+ T cell clones reveals persistence in the peripheral blood for years after ICB therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Linfócitos T CD8-Positivos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Receptores de Antígenos de Linfócitos T , Células Clonais , Microambiente Tumoral
17.
Immunity ; 56(1): 93-106.e6, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36574773

RESUMO

Improved identification of anti-tumor T cells is needed to advance cancer immunotherapies. CD39 expression is a promising surrogate of tumor-reactive CD8+ T cells. Here, we comprehensively profiled CD39 expression in human lung cancer. CD39 expression enriched for CD8+ T cells with features of exhaustion, tumor reactivity, and clonal expansion. Flow cytometry of 440 lung cancer biospecimens revealed weak association between CD39+ CD8+ T cells and tumoral features, such as programmed death-ligand 1 (PD-L1), tumor mutation burden, and driver mutations. Immune checkpoint blockade (ICB), but not cytotoxic chemotherapy, increased intratumoral CD39+ CD8+ T cells. Higher baseline frequency of CD39+ CD8+ T cells conferred improved clinical outcomes from ICB therapy. Furthermore, a gene signature of CD39+ CD8+ T cells predicted benefit from ICB, but not chemotherapy, in a phase III clinical trial of non-small cell lung cancer. These findings highlight CD39 as a proxy of tumor-reactive CD8+ T cells in human lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Inibidores de Checkpoint Imunológico/uso terapêutico , Linfócitos T CD8-Positivos , Imunoterapia
18.
NPJ Vaccines ; 7(1): 120, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36261460

RESUMO

Protein or peptide-based subunit vaccines have generated excitement and renewed interest in combating human cancer or COVID-19 outbreak. One major concern for subunit vaccine application is the weak immune responses induced by protein or peptides. Developing novel and effective vaccine adjuvants are critical for the success of subunit vaccines. Here we explored the potential of heat-inactivated MVA (heat-iMVA) as a vaccine adjuvant. Heat-iMVA dramatically enhances T cell responses and antibodies responses, mainly toward Th1 immune responses when combined with protein or peptide-based immunogen. The adjuvant effect of Heat-iMVA is stronger than live MVA and is dependent on the cGAS/STING-mediated cytosolic DNA-sensing pathway. In a therapeutic vaccination model based on tumor neoantigen peptide vaccine, Heat-iMVA significantly extended the survival and delayed tumor growth. When combined with SARS-CoV-2 spike protein, Heat-iMVA induced more robust spike-specific antibody production and more potent neutralization antibodies. Our results support that Heat-iMVA can be developed as a safe and potent vaccine adjuvant for subunit vaccines against cancer or SARS-CoV-2.

19.
Nanoscale Horiz ; 7(12): 1540-1552, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36285605

RESUMO

Visualizing the presence and distribution of multiple specific molecular markers within a tumor can reveal the composition of its microenvironment, inform diagnosis, stratify patients, and guide treatment. Raman imaging with multiple molecularly-targeted surface enhanced Raman scattering (SERS) nanoprobes could help investigate emerging cancer treatments preclinically or enable personalized treatment assessment. Here, we report a comprehensive strategy for multiplexed imaging using SERS nanoprobes and machine learning (ML) to monitor the early effects of immune checkpoint blockade (ICB) in tumor-bearing mice. We used antibody-functionalized SERS nanoprobes to visualize 7 + 1 immunotherapy-related targets simultaneously. The multiplexed images were spectrally resolved and then spatially segmented into superpixels based on the unmixed signals. The superpixels were used to train ML models, leading to the successful classification of mice into treated and untreated groups, and identifying tumor regions with variable responses to treatment. This method may help predict treatment efficacy in tumors and identify areas of tumor variability and therapy resistance.


Assuntos
Neoplasias , Análise Espectral Raman , Camundongos , Animais , Análise Espectral Raman/métodos , Imunoterapia , Anticorpos/uso terapêutico , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Fatores Imunológicos , Imagem Molecular , Microambiente Tumoral
20.
Nat Commun ; 13(1): 5312, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36085288

RESUMO

Response to immunotherapies can be variable and unpredictable. Pathology-based phenotyping of tumors into 'hot' and 'cold' is static, relying solely on T-cell infiltration in single-time single-site biopsies, resulting in suboptimal treatment response prediction. Dynamic vascular events (tumor angiogenesis, leukocyte trafficking) within tumor immune microenvironment (TiME) also influence anti-tumor immunity and treatment response. Here, we report dynamic cellular-level TiME phenotyping in vivo that combines inflammation profiles with vascular features through non-invasive reflectance confocal microscopic imaging. In skin cancer patients, we demonstrate three main TiME phenotypes that correlate with gene and protein expression, and response to toll-like receptor agonist immune-therapy. Notably, phenotypes with high inflammation associate with immunostimulatory signatures and those with high vasculature with angiogenic and endothelial anergy signatures. Moreover, phenotypes with high inflammation and low vasculature demonstrate the best treatment response. This non-invasive in vivo phenotyping approach integrating dynamic vasculature with inflammation serves as a reliable predictor of response to topical immune-therapy in patients.


Assuntos
Imunoterapia , Microambiente Tumoral , Humanos , Fatores Imunológicos , Inflamação , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA